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Rapid calculations for boundary-layer transfer using 
wedge solutions and asymptotic expansions 

By H. J. MERK 
Koninklijke/Shell-Lctboratorium, Amsterdam, Holland 

(Received 28 July 1958) 

Exact transfer calculations for boundary layers with longitudinal pressure 
gradients are very complicated, but in the literature several approximate methods 
are known for the rapid calculation of both the wall friction and the heat transfer. 
A ‘wedge method’ propounded by Meksyn turns out to be one of the most rapid 
methods, being no less accurate than other approximate methods. A way of 
refining this method is proposed. 

This paper also shows that asymptotic expansions provide convenient relations 
which are capable of expressing the Nusselt number explicitly in terms of the 
Prandtl number. 

It is shown that, together with the asymptotic expansions, Meksyn’s method 
permits rapid calculation of local heat transfer numbers. Some examples of 
application are given for elliptical cylinders and spheres for several values of the 
Prandtl number. 

1. Introduction 
This paper is concerned with the transfer of heat and mass from a body placed 

in a stream. Provided the Reynolds number of the flow lies within the approxi- 
mate range from lo2 to lo5, we may state: 

Assumption I .  The transfer phenomena in the vicinity of a body submerged in 
a streaming fluid may be described by the laminar boundary-layer theory. 

Furthermore we introduce: 
Assumption II. There are no external volume forces in the streaming fluid. 
This excludes free convection, so that we are only concerned with forced 

Assumption III. The main flow outside the boundary layer is irrotational. 
This means that the intensity of the turbulence in the main flow has to be very 

low and that this flow may be calculated by means of the potential theory. 
Restricting ourselves to the calculation of friction and heat transfer in unitary 

systems, we are only concerned with two boundary layers, viz. the dynamic boun- 
dary layer in which the transfer of momentum occurs, and the thermal boundary 
layer in which the transfer of heat occurs. It is well known that the boundary- 
layer theory can only be applied if the thickness S of the dynamic boundary layer 
is small enough. If this condition is satisfied, we may ask whether or not the thick- 
ness 8, of the thermal boundary layer is small enough to permit the application 
of the boundary-layer approximations to the calculation of the heat transfer. 

_____. 

convection phenomena. Thus we include: 
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It is known that 6, < 6 for x < v, x being the thermal diffusivity of the fluid and 
Y its kinematic viscosity. Introducing the Prandtl number 5 = v /x ,  we conclude 
that for (T > 1, when 6 is small enough, 6, is small afortiori. Hence, assumption I 
is legitimate if the thickness of the dynamic boundary layer is small enough. 

For (T < 1, the thickness of the thermal boundary layer is greater than that of 
the dynamic boundary layer, so that in this range of the Prandtl number it may 
not suffice to assume that the thickness of the dynamic boundary layer is small 
enough. The limit cr -+ 0 must especially be considered with care. This limit may 
be relevant if the kinematic viscosity is small (but finite) and the thermal 
diffusivity is very large. In  this case the boundary-layer concept is not applicable 
to the calculation of the heat transfer, although it is applicable to the calculation 
of the friction. On the other hand, it is possible that a t  the limit (T -+ 0 the 
kinematic viscosity approaches zero at small (but finite) values of the thermal 
diffusivity. This means that for cr = 0 we are concerned with heat transfer in 
a thermal boundary layer in a potential flow around the body considered. This 
problem has been investigated with great elegance by Boussinesq (1903, 1905) 
(see also Drew 1931), who introduced the concept of the thermal boundary 
layer before Prandtl (1904) proposed an analogous concept for the transfer 
of momentum. As a corollary of assumption I, we have thus to conclude 
that for 5 -+ 0 the boundary-layer theory of the heat transfer changes into 
Boussinesq’s theory. 

Although the boundary-layer concept simplifies the calculations considerably, 
the solution of the boundary-layer equations is generally still troublesome. The 
exact solution for boundary layers with an arbitrary longitudinal pressure 
gradient consists essentially in constructing power series in terms of the distance 
from the forward stagnation point of the body. The exact calculations by means 
of series expansion are cumbersome, because the convergency of the series is 
mostly bad. It is, therefore, generally necessary to perform the exact calculations 
numerically if the distance from the forward stagnation point is too large for the 
series expansion to be applied (e.g. see Prandtl 1938; Gortler 1939; Frossling 
1940). In  order to avoid the lengthy exact calculations, several approximate 
methods have been developed. 

One of the best-known approximate methods is that of von K&rm&n (1921) and 
K. Pohlhausen (1921). Generally, this method is still troublesome and its accuracy 
is disappointing. Hence, we shall consider another group of approximate methods, 
called here the ‘wedge methods ’, because these methods are based upon the well- 
known solutions of the boundary-layer equations for wedge-shaped profiles. The 
first wedge method was propounded by Falkner & Skan (1930,1931). This method 
has been modified by Eckert (1942), Schuh (1949, 1954), Eckert & Livingood 
(1953), Kotschin & Loizjanski (see Kotschin, Kibel & Rose 1955), and by Smith 
(1956). All these wedge methods bear the same characteristic features: they are 
rapid and based upon some arbitrary hypothesis of physical nature, which has to 
be introduced in order to find the wedge element ‘equivalent ’ to the element of 
the profile considered. The wedge methods of the authors named above differ only 
in the hypothesis used. Their fundamental disadvantage is that it  is not clear how 
the calculations are to be improved if more accurate results are desired. 
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Meksyn (1947, 1948) has developed a method of calculation for the dynamic 
boundary layer, which may also be considered as a wedge method. This method 
consists essentially of a transformation of the boundary-layer equations and 
a mathematical simplification of the transformed equations. A great advantage 
of Meksyn’s method is that no physical hypothesis is needed; the simplifications 
introduced are of a mathematical nature. As a result, it  is possible to refine the 
calculations in a straightforward way. Furthermore, Meksyn’s method has the 
following three advantages: (1) For wedge-shaped profiles (and hence in the 
vicinity of the forward stagnation point) the method yields exact results. (2) It 
may be expected that for arbitrary profiles successive refinements of the method 
converge towards the exact solution. (3) The method provides probably one of 
the most rapid calculations hitherto propounded in the literature. 

It is quite easy to extend Meksyn’s method to the calculation of heat transfer. 
In  his original papers Meksyn applied complicated transformations allowing for 
the extension of the equations to lower values of the Reynolds number. If we are 
concerned with the pure boundary-layer equations only, it  is possible to obtain 
Meksyn’s final equations in a simple way. This will be shown in the next section. 

In  the present paper we have restricted ourselves to the most simple boundary- 
layer problems by the introduction of the following two assumptions: 

Assumption I V .  All physical quantities (viscosity, thermal conductivity, heat 
capacity) of the fluid are constant throughout the boundary layer. 

Assumption V .  The Mach number of the flow is low. The latter assumption 
means that in the thermal energy equations the dissipation and pressure terms 
may be neglected, while furthermore the density of the fluid may be considered 
as a constant. 

It has to be stressed that the last two assumptions are not essential for the 
application of Meksyn’s method. 

2. Fundamental equations 
Let us consider steady two-dimensional or rotationally symmetrical boundary- 

layer flows. For these cases we may introduce the coordinates (x, y), x being the 
distance from the forward stagnation point measured along the circumference of 
the two-dimensional profile or median line of the rotationally symmetrical body, 
and y being the normal distance from the wall of the body. For rotationally 
symmetrical bodies we also introducer, the distance from a surface element of the 
body to the axis of symmetry. Denoting the components of the velocity parallel 
to the x- and y-axis by u and v respectively and making use of assumption IV, the 
equations of the dynamic boundary layer are 

qru)  q r v )  -+- = 0. ax ay (3) 
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(Note that equation ( 2 )  holds for curved surfaces; for flat surfaces we may put 
ap/ay = 0.) These are the boundary-layer equations for rotationally symmetrical 
bodies. For a two-dimensional boundary layer, equations (1) and ( 2 )  retain the 
same forms, but in the continuity equation (3) r has to be dropped. Hence, the 
two-dimensional boundary-layer equations are formally obtained from (I), ( 2 )  
and (3) by putting r equal to a constant. From (1) and the well-known fact that at  
the end of the boundary layer aulay and a2u/ay2 are very small, we obtain 

where subscript e denotes the conditions at the end of the boundary layer. The 
boundary conditions are 

u = v = 0 for y = 0, and u+ue for y-f a. (5) 

For the calculation of the heat transfer, we also need the thermal energy equa- 
tion. Denoting the temperature by T and making use of the assumptions IV and 
V, the boundary-layer approximation to the thermal energy equation becomes 

with the boundary conditions 

T = T, for y = 0, and T + T, for y -+ co, (7) 

where the subscript w denotes the conditions at the wall. 
In  order to satisfy (3), a stream function $ is introduced, such that 

(8) 
L a$ L a$ 

u=---, v =  --- 

L being a reference length of the body considered. For r = L, (8) defines the 
stream function of a two-dimensional flow. 

r a Y  r ax’ 

The x and y coordinates will now be transformed by writing 

where ‘v is the velocity of the oncoming flow, and R = VL/v. The stream function 
$(z, y) will be written 

(10) 

Equations (9) and (10) represent the essential parts of Meksyn’s transformations; 
and i t  is easily recognized that (9) also contains the transformation used by 
Mangler (1948) for rotationally symmetrical boundary layers. From (8), (9) and 
(10) we obtain 

$@, Y) = ‘v.W5/R)V(E, 7). 

( 1 1 4  
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Here A is the 'wedge variable' defined by 

We remark that for pure wedge flow, r = L and u, = cxm. It then follows from (12) 
that A = Z r n / ( r n +  1) = const. From (9) and (11) we derive 

Making use of (4), (9), ( 1  1 a) ,  (12) and (13), the transformation of (1) is now easily 

a(f ' , f)  
a(&-, 7) ' 

obtained : 
f"+f+A(l-f'Z) = 2g-  

while the boundary conditions (5) become 

af 
36 

f + % -  = 0, and f ' =  0 for 7 = 0,  

f ' =  1 for q- foo .  

In  (14) and (15) the accents refer to differentiation with respect to r ,  while on the 
right-hand side of (14) the Jacobian has been introduced as a convenient notation. 

In order to transform (6), we introduce 

T ( x ,  Y) = T, + (Te- T,) %&-,T). (16) 

On the assumption that T, and T, do not depend on x,  the thermal energy 
equation and its boundary conditions become 

with 9 = 0 for 7 = 0, and 9 = 1 for 7 + co. (18) 

Herewith the transformations are completed, and we have now to solve the 
equations (14) and (17) with the boundary conditions (15) and (18) respectively. 
For that purpose we remark that in the boundary layer r depends only on x ;  
moreover, the dependence of ue on 2 can be calculated from the potential theory 
or derived from experiments. Hence, g depends only on x, and for a given body we 
may consider x and u, as known functions of 6. As a result A is a known function 
of 6. Inverting this function we may also say that for a given body, < is a function 
of A. The solution of (14) may thus be written as follows: 

(19) 
d A  
d&- 

f ( L 7 )  = f o ( A  11) + 2!5--f1(A, 7) + . . .. 

f ~ + f o f ~ + A ( l - f d z )  = O ,  ' 

and f; = 1 for 7 --f 00, 

Substituting (19) in (14) and (15), we get 

(20) 
fo  = f; = 0 for 7 = 0, 
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and so on. The local friction coefficient is calculated from 

465 

P(au/aY)Y=O 
C f = - & v 2 - 7  

or, after transformation, 

where k t k  = Ak(A) = fi(A,O) (k = 0, 1 ,2  ...). 

In  order to solve (17), we put 
dA 

?I) = ~o(4,r) + 2 5 x  %(A, r )  + . . * - 

Substituting (24) in (17)  and (18), we then obtain 

9;+gfo9; = 0, 

9, = 0 for 7 = 0, and 9, = 1 for 7 + co, 

8, = 0 for 7 = 0, and 9, = 0 for 7 -+ co, 1 
and so on. The local Nusselt number is defined by 

(24) 

where E k  Ek(A) = 8;(A, 0) (k = 0, 1 ,2  ...). (28) 

The transformations (9) and (lo), and the expansions (19) and (24), are closely 
related to those being proposed by Gortler (1957). The latter author, however, 
expands the wedge variable A in terms of 6. If this is done, Meksyn’s original 
approximation method cannot be applied, so that A is retained here as an inde- 
pendent variable replacing the variable 6. This is the principal difference between 
Meksyn’s and Gortler’s methods. According to Gortler, Meksyn’s treatment 
involves the calculation of the potential flow around the body considered before 
attacking the boundary-layer problem. However, it  is easily shown that the 
transformations (9) and (10) may be derived from those given by Meksyn if the 
equipotentials and streamlines around the given body are expressed in terms of 
the velocity of the potential flow around that body. We are therefore of the 
opinion that Meksyn’s method is of great value for rapid boundary-layer calcula- 
tions for any given u,(z). 

The calculation of %he local friction coefficient and the local Nusselt number 
may now proceed as follows. For a given body, r and u, are known functions of x, 
so that for each value of x the quantities 5, A, dA/d& etc., can be calculated. 
Hence, for each value of x, the corresponding values of A,  and Ek can be deter- 
mined from tables or diagrams representing A, and Ek as functions of A and CT. 

30 Fluid Meoh. 5 
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Thereupon, the local friction coefficient and the local Nusselt number are rapidly 
calculated from (22) and (27) respectively. As soon as A,  and E, are known, this 
calculation can proceed very rapidly. A ,  has been calculated by Hartree (1937), 
while E, has been calculated by Eckert (1942) for Q = 0*7,0*8, 1 ’ 5  and 10. As far 
as we know, A,  and E, for lc 2 1 have not been calculated as yet. However, for the 
application of a pure wedge method we need only A,  and E,, since for wedge- 
shaped profiles (for which A = constant) only the first terms at the right-hand 
sides of (19), (22), (24) and (27) are retained, while all other terms vanish. As 
a result, application of a pure wedge method to arbitrary two-dimensional 
profiles or rotationally symmetrical bodies means that only the first terms at the 
right-hand sides of (22) and (27) have to be retained (this approximation will be 
called Meksyn’s wedge method). Since A ,  and El are finite, this procedure is 
legitimate if 5 and/or dA/d[  are small. Generally speaking, this is the case in the 
vicinity of the forward stagnation point. At some distance from the forward 
stagnation point the second terms in (22) and (27) also become important. 
However, comparing the results obtained by Meksyn’s wedge method with those 
obtained by the wedge methods mentioned in § 1, it appears that the accuracy of 
Meksyn’s wedge method is of the same order of magnitude as that of the others. 
This demonstrates the rapid convergence of the series (22) and (27). It may be 
expected that even in the vicinity of the separation point of the boundary layer 
the series (22) and (27) yield satisfactory results if only two terms are retained. 

Finally, we remark that the same method may be used if the assumptions I V  
and V are rejected. For gases i t  is, for example, convenient to apply first 
Stewartson’s (1950) transformation (see also Cohen & Reshotko 1955) to the 
boundary-layer equations, whereupon ‘wedge coordinates ’ analogous to those 
defined by (9) may be introduced. It is also possible to account for variations in 
the temperature of the wall. We have made analogous calculations for unsteady 
two-dimensional boundary layers. For unsteady rotationally symmetrical 
boundary layers the method fails, because then it is no longer possible to apply 
Mangler’s transformation. 

Using Meksyn’s wedge method, we have also performed mass transfer calcula- 
tions accounting for a velocity normal to the wall of the body. All these modifica- 
tions of Meksyn’s wedge method are not treated in this paper, because we intend 
to discuss only the principles of this method and not all its possible extensions. 

3. Asymptotic expansion of the Nusselt number for a flat plate 
We shall now discuss how the Nusselt number may be represented explicitly as 

a function of the Prandtl number. For that purpose we consider first the most 
simple case, viz. that of the flat plate without a longitudinal pressure gradient. In  
that case we have r = L, u, = V ,  A = 0, f = f,, and 9 = 9,. Hence, (27) becomes 

- N = ( i ) ’E.  
R) 

Averaging the Nusselt number over the length L of the plate, we get 
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In  the same manner the average value of the friction coefficient is obtained from 
(22), yielding Ef R* = 2%A. (30) 

In  order to calculate E ,  we derive from (25), for 9 = 9, andf =to, 

where 

131) 

(32) 

Formula (31) has been worked out by several authors. First of all we mention the 
exact calculations performed by E. Pohlhausen (1921). Other authors remarked 
that for large values of the Prandtl number the thickness 6, is only a small 
fraction of the thickness 6, so that for the calculation of E the velocity profile in 
the thermal boundary layer may be linearized, that is, in (31) the function F may 
be represented by *Aq2. This procedure has already been applied by Falkner & 
Skan (1930,1931), while the approximate calculations made by Piercy & Preston 
(1936) are in fact based upon the same principle. Lighthill (1950) developed an 
elegant method of calculating the heat transfer in laminar boundary layers, 
which is also based upon linearized velocity profiles. Tifford (1951), remarking 
that Lighthill’s results are only valid for high values of the Prandtl number, 
modified Lighthill’s formulae in order to obtain results valid for u = 1. 

Frossling (1940) and Schuh (1949, 1954) also discussed the limit u -+ m, while 
Davies & Bourne (1956) developed a method where the velocity profile is repre- 
sented by cqn, n being determined in such a way that the results for u + 1 agree 
as closely as possible with the exact solution. Finally we may mention a paper by 
Morgan & Warner (1956) containing a survey of applications of heat transfer 
calculations in the limit g -+ co. 

In  the papers mentioned above, the formulae for the Nusselt number represent 
the first term of an asymptotic expansion for high values of the Prandtl number. 
In  order to obtain formulae for lower values of u, the expansion has to be extended. 
This may be done in several ways. An obvious way is to substitute 7 = P i n  (31) 
and to consider r as a new integration variable. In  that way (31) becomes 

This formula shows that l/E(cr) may be considered as the Laplace transform of 
dy/d7. Hence, the asymptotic expansion of l/E(u) may be obtained by means of 
Abel’s well-known asymptotic theorem (see, for instance, Doetsch 1943). In  
order to apply this theorem we have to expand P(q)  in a power series. Putting 
A = 0, the expansion off = fo is easily derived from (20). This expression has 
already been derived by Blasius (1908) and reads on as follows: 

3 6 9 12 

r F F = A ~ - A 2 7 1 + 1 1 A 3 7 1 - 3 7 5 A 4 ~ + 0 ( q 1 5 ) ,  3! 6! 9! 12! (34) 

where 0 is the well-known Bachmann-Landau symbol. Inversion of (34) yields 

30-2 
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Substituting (35) in (33), we obtain 

On term-by-term integration of the right-hand side of the last equation, an 
asymptotic expansion is obtained. Since the reciprocal of an asymptotic expan- 
sion is again an asymptotic expansion, a simple calculation brings forth the 
following result: 

1,168 
3,007,125 g - 3 +  0 ( ~ - 4 ) ] ,  (36) 

SIR) 
A r > 

Asymptotic expansion (37) 

0- 

0- 1 
0.5 
0.6 
0-7 
0.8 
0.9 
1.0 
1.1 
7 

10 
15 

1 term 

0.5377 
0.57 14 
0.6015 
0.6289 
0-6541 
0.6775 
0.6994 
1.2959 
1.4595 
1.6708 

- 
2 terms 

0.5138 
0-5502 
0.5824 
0.6114 
0.6380 
0.6624 
0.6853 
1.2918 
1.4563 
1-6683 

- 
3 terms 

0-5202 
0.5549 
0.5860 
0.6143 
0.6403 
0.6644 
0.6870 
1-2919 
1.4563 
1.6683 

TABLE 1 

- 
4 terms 

0.2846 
0.5185 
0.5539 
0.5853 
0-6138 
0-6400 
0-6641 
0-6868 
1.2919 
1.4563 
1.6683 

Exact 

0.2762 
0.5182 
0.5537 
0.5853 
0.6138 
0.6400 
0.6641 
0.6868 
1.2919 
1.4563 
1.8682 

Tifford 

0.294 
0.520 
0.554 
0.585 
0.614 
0.640 
0.664 
0.687 
1.32 
1.50 
1.73 

where I? denotes the gamma-function. The coefficient A has been calculated by 
Blasius (1908) and by Topfer (1912). According to the latter author we have 
A = 0.3320642 = 0.46960, while I?($) = 0-89298. Substituting (36) in (29) and 
making use of the given values of A and I?($), we obtain 

iv 2 1,168 r 3 + 0 ( ~ - 4 ) ) .  (37) 
R+ ( 415 675 
- = 0.6775~) 1 - - g-l+ ~ (T-' - ~ o o 7 ~ ~  

The Nusselt number calculated by means of (37) may be compared with the exact 
calculations made by E. Pohlhausen (1921). For that purpose we have extended 
Pohlhausen's calculations in order to obtain results in four figures (Pohlhausen 
gives only three figures), while we have also performed calculations for = 0.5 
and 0.1. The results are shown in table 1, where values calculated by means of 
Tifford's (1951) formula are also included. For a flat plate Tifford's formula 

(38) 

Table 1 shows that Tifford's formula yields satisfactory results if v + 1; for 
very high and low values of the Prandtl number formula (38) fails. Furthermore, 

reads w 
- = 0.664g0.35. 
R+ 
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it  appears that for CT 2 0.5 our expansion (37) leads to surprisingly good results 
even to the fourth decimal place. Even for r = 0.1, this expansion may be used if 
its convergency is improved by means of Euler’s transformation (for CT 2 0.5, 
Euler’s transformation does not improve the convergency), since the value cal- 
culated by (37) is then only about 3 yo too high. 

Table 1 indicates how many terms of the expansion have to be retained. For 
CT 2 1, two terms of the expansion are sufficient if the desired accuracy is not 
higher than 0-3 yo. For CT 2 10, one term is sufficient. 

For CT = 1, we have 9 = f’, so that apparently the expansion (37) may also be 
used to calculate A. This has already been proposed by Meksyn (1950,1955,1956), 
who worked out this method to calculate the friction coefficients and separation 
points of boundary layers with longitudinal pressure gradient. As far as we know 
this author did not derive expansions of type (37) showing the dependence of the 
Nusselt number on the Prandtl number. 

4. Asymptotic expansion of E, for arbitrary values of the wedge 
variable 

We shall now show that by the asymptotic method one can also easily calculate 
the transfer coefficients for A $. 0, i.e. for boundary layers with longitudinal 
pressure gradient. For that purpose we calculate E, from (25). Again we have 

l?, being given by 

Eb(7l) = JoVfo(?l)d71. 

From (20) we derive 
re 713 715 f o  = A,--A-+At(2A- 1)-+0(76), 
2! 3! 5 !  

(39) 

(40) 

where A,  is defined by (23). From the last expansion we obtain 

r = P , =  A,--An+A~(2A-1)-+O0(7l7), 713 714 716 
3! 4! 6! 

or, after inversion, 

Substituting (41) in (39), we may use the same method as in Q 3. The result of the 
calculations is given by 
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From this expansion it follows (with = 2.6789 and I?($) = 1.3541) that 

E, = o.6163(A0~)* 1 - 0.1531AA,%a-*-0.0536A2A,+a-% 

+ (v - 0.03402A3Ag4 + O(c7-t) . (42) 

The quantity A,  has been calculated by Hartree (1937) and in figure 1 is repre- 
sented as a function of A for -0.1988 < A < 1. In  order to show that the 

) I 

FIGURE 1. A,  as a function of the wedge variable A, according to Hartree (1937). 

E,  for cr = 1 
h c 7 

A Eckert Expansion (42) 
1.0 0.5704 0.5689 ( - 0.3 yo) 
0.5 0.5390 0.5370 ( - 0.4 %) 
0.0 0.4696 0.4684 ( - 0.3 Yo) 

- 0.14 0.4160 0.4196 ( + 0.9 yo) 
TABLE 2 

expansion (42) may be used for finite values of the Prandtl numbers, we compare 
the values calculated from (42) with those calculated exactly by Eckert (1942). 
Table 2 shows that expansion (42) leads to satisfactory results for c~ = 1. For 
a 2 0-7, the expansion is even more accurate than the interpolation formula 
proposed by Eckert (1942). Furthermore, table 2 shows that the accuracy of the 
expansion decreases as A decreases. This is due to the fact that A, approaches 
zero if A approaches - 0.1988. For A,  = 0, the expansion (42) is meaningless and 
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has to be replaced by another expansion. Putting A,  = 0 (A = -0.1988), we 
derive from (20) 

fo = -A  713 3-2A2(2 - 3A) 7' -- 16A3(2 - 311) (8 - 7A) - 711 +0(715)). 
7! l l !  

Applying the same technique as before, we find 

Substituting (43) in (39) and putting A = - 0.1988, we obtain 

E, = 0.3328&{1- 0*02318g-1+ 0 * 0 0 0 0 1 3 4 5 ~ ~ - ~ + 0 ( ~ - ~ ) ) .  (44) 

For (r = 0.7 this expansion yields E, = 0.2943, while according to the exact 
calculations made by Brown & Donoughe (1951) we should have Eo = 0.2939. 
Since in both cases the fourth figure is not reliable, the agreement is satisfactory. 

A ... 1.6 1.0 0.5 0.2 0 -0.14 -0.1988 

T* 0.5439 0.6479 0-8044 0-9839 1.2167 1.6967 2.3587 

TABLE 3 

It is also possible to derive expansions valid for very low values of the Prandtl 
number. In this case the thickness of the dynamic boundary layer is only a small 
fraction of the thickness of the thermal boundary layer. This means that in (39) 
fo may now be approximated by the asymptotic expansion in terms of 7. Since 
f; = 1 for 7 --f 00, we may write 

fo - 7-7*> (45) 

where 7" may be interpreted as a reduced displacement thickness defined by 

q* = lim J,' (1  -f;)dT = lim (7 -fo(s)>. 
II-tm II+ * 

Substituting (45) in (39), we obtain 

where 

For low values of the Prandtl number, the right-hand side of (46) may be 
expanded further. The result is 

E, = (zlff/n)+[1-7"(2a/7r)++ ...I. (47) 

Values for q* have been provided by Eckert (1942), and are given in table 3. 
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The interpretation of (47) is obvious: the first term at the right-hand side of (47) 
represents the heat transfer in a potential flow and agrees with the formulae 
derived by Boussinesq (1903, 1905). This interpretation is in accordance with the 
considerations in 9 1. The second term in (47) represents a first-order correc- 
tion accounting for small viscosity effects. For flat plates, formula (47) has 
been discussed by Sparrow & Gregg (1957). These authors show that (at least 
for flat plates) (47) yields satisfactory results for values of the Prandtl number 
smaller than about 0.03. 

Finally, in figure 2, E,, is represented as a function of A for some values of the 
Prandtl number. 
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FIGURE 2. E ,  a.s a function of the wedge variable A, 

for some values of the Prandtl number. 

5. Application to the calculation of the local heat transfer 
Meksyn (1947, 1948) has already given some applications to the calculation of 

the local friction coefficient, so that we shall confine ourselves to the calculation of 
the local heat transfer. Let us first consider some two-dimensional profiles, 
viz. elliptical cylinders. The elliptical profile is determined by the ratio a /b  of its 
semi-axes, a being parallel to the oncoming flow (see figure 3). The case a/b = 1 
represents the circular cylinder, and a/b = co the flat plate parallel to  the direction 
of the oncoming flow. Furthermore, we shall consider the cases a/b = 2 and 4. The 
reference length L will be defined by L = 2a. 

In  order to calculate the wedge variable we have to know ue as a function of x. 
For elliptical cylinders the potential theory yields 

1 - cos 24 &)' = (l+;)' 1 + (a/b)2+{1- (a/b)2}cos24,' 
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where 9 is the angular coordinate (see figure 3). Since we have taken for our two- 
dimensional profiles r = L, we obtain from (12) and (48) 

(49) 
4 cos (i5 A =  

1 + (a/b)2 + { 1 - (a/b)2) cos 2 $ 1 +  cos 9 ‘ 
Formula (48) is the more reliable the more slender the elliptical profiles. For 

broad profiles the wake behind the cylinder has an important influence on u,, and 

V 
_I 

I x l b - l  2 4 w 

t 

2b 

2a 

FIUURE 3. Sketch of the elliptical profiles considered in the text. 

this influence is not accounted for in (48). Hence, for circular cylinders it is 
advisable to derive ue from experiments instead of from (48). For that purpose 
u, is written as 

where L is now equal to the diameter of the cylinder. According to Hiemenz 
(1911) we have 

forR = 18,500, while according to the measurements made by Schmidt & Wenner 
(1941) we have 

for R = 170,000. 
In  figure 4 the curves of the wedge variable are given. For a/b = 1, three curves 

are given, which are all calculated from (12) for r = L. The calculation of the solid 
curve is based upon ue according to the potential theory, that of the dashed curve 
upon u, according to the measurements made by Schmidt & Wenner (1941), and 
that of the dash-dotted curve upon u, according to the measurements made by 
Hiemenz (1911). 

Figure 4 shows that in the vicinity of the forward stagnation point dAldx + 0, 
while moreover is small. Hence, in this region Meksyn’s wedge method is near to 
the mark. If a/b increases, this region decreases, but a t  the same time the slope of 
the (A,x)-curves at median values of x/L becomes smaller, indicating that at 
median values of x1.L Meksyn’s wedge method is fairly accurate. This is to be 

ue/ v = u,(x/L) - u3(x/L)3 - u5(x/L)5, 

u1 = 3.631, U, = 2.171, U~ = 1.514 

u1 = 3.631, = 3.275, = 0.168 
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expected, since slender profiles behave approximately like flat plates and for 
these Meksyn's wedge method is exact. 

At the vicinity of the separation point of the boundary layer, which according 
to Hartree (1937) is determined by A = - 0.1988, the slope of the (A, 2)-curves is 
large, so that in this region the method is no longer reliable. This may also be 
demonstrated by means of the calculated position of the separation point. 
Denoting the separation point by suffix s, we obtain from the wedge method 
q5x = 95.2" for a circular cylinder (ue according to the potential theory), while the 
series expansion of Blasius leads to q58 = 110". If ue is represented by the measure- 
ments made by Schmidt & Wenner, we then find $8 = 72.4", while the experi- 
mental value is given by q5x + 80". For the elliptical cylinder with alb = 2 and ue 
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- 02 
0 0 2  0 4  0 6  0 8  1.0 

X l L  
FI~URE 4. Wedge variable for elliptical profiles; solid curves according to the potential 
theory, dashed curve according to Schmidt t Wenner (1941), dash-dotted c w e  according 
to Hiemenz (1911). 

according to the potential theory, we get from Meksyn's wedge method 
$s = 105-8", from Eckert's wedge method #x = 115", and from the integral 
method of Pohlhausen 9, = 120.8". Apparently the separation points calculated 
from Meksyn's zero-order approximation are too low. 

In  figure 5 the local Nusselt numbers are given for the circular cylinder for 
CT = 0-7, 1, 5 and 10. The calculations are based upon the velocity distribution 
measured by Schmidt & Wenner. For CT = 0.7 the calculations may be compared 
with those of Eckert (1942) and Frossling (1940). In  figure 5 the dashed curve is 
calculated by Eckert and the dash-dotted curve by Frossling. For $ < 50" the 
agreement is satisfactory, but for higher values of # discrepancies exist. Frossling's 
calculations are based upon series expansions in terms of xlL containing only three 
terms, so that Frossling's curve is no longer reliable for # > 50". Hence, i t  is not 
possible to decide whether Eckert's or our curve is to be preferred. In  figure 6 the 
local Nusselt numbers calculated from Meksyn'B wedge method are compared 
with those measured by Schmidt & Wenner. The three calculated curves corre- 
spond to those given in figure 4 for a/b = 1. The curve calculated by means of the 
velocity distribution measured by Schmidt & Wenner is satisfactory, though the 
theoretical value at the forward stagnation point is too low (it has to be borne in 
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mind that at this point the theoretical value is exact). The curve calculated by 
Eckert (not given in figure 6) gives a worse fit to the experimental curves, since 
Eckert’s curve is too flat in the vicinity of the separation point. As far as we know, 
no calculations have as yet been performed for values of B other than 0.7, so that 
we cannot compare our calculations with others for B = 1, 5 and 10. 

In figure 7 the local Nusselt number is given for the elliptical profile with a/b = 2. 
The dashed curve is calculated by Eckert. At the separation point this curve is 
again higher than ours. 

3.0 

I T T T - - ]  

4 
FIGURE 5. The local Nusselt number for circular cylinders; solid curves are calculated 
according to Meksyn’s method, dashed curve according to Eckert ( 1942), dash-dotted curve 
according to Frossling (1940). 

In  figure 8 the calculations are represented for elliptical profiles with a/b = 4. 

For B > 10 the calculations may be performed by means of the first term of the 
In  this case the difference between Eckert’s calculations and ours is negligible. 

expansion (42), so that 

At the separation point we obtain from (44) 

Hence, if the quantity N/(R&d)  is plotted against x, then in the limiting case 
CT -+ 00 the curves approach zero as z approaches the separation point, though the 
local heat transfer at this point is not zero. The results of the calculations are 
shown in figure 9. Together with figures 5 , 7  and 8, figure 9 shows the behaviour 
of the local heat transfer of elliptical cylinders for CT 2 0-7. 

Eo(R, B) = 0*6163(A0(A) a}*. 

go( - 0.1988, B) = 0.3328d. 

(50) 

(51) 
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Comparison between calculated and measured local Nusselt 

for circular cylinders at u = 0.7. 
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for circular cylinders at u = 0.7. 
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FIGURE 7. a/b = 2; 
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FIGURE 8. The local Nusselt number for an elliptical profile with a/b = 4. 
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FIGURE 9. The local Nusselt number for some elliptical pro6les at ff$ 1. 
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Finally, we shall discuss the application to spheres. Putting L equal to the 
diameter of the sphere, we have 

r /L  = sin = 3 sin ( 2 x / L ) .  (52) 

The velocity ue may be derived from the measurements made by Fage for 
R = 157,200. Frossling (1940) represented these measurements by 

u,/V = 3(x/L) - 3 * 4 9 6 6 ( ~ / L ) ~  + 4 * 7 3 9 1 ( ~ / L ) ~ -  5*1481(x/L)'. (53) 

From (52) and (53) the wedge variable can be calculated, whereupon the local 
Nusselt number is easily computed by means of Meksyn's wedge method. The 

# 
FIGURE 10. The local Nusselt number for spheres; the dots represent 

the measurements made by Frossling (1940) at cr = 1/0*395. 

results are shown in figure 10. We have also performed the calculations for 
cr = 1/0.395 = 2.56. This curve may be compared with the measurements made 
by Brassling (1938). The agreement between experiment and theory is surpris- 
ingly good, but may be accidental, because the measurements were performed 
at R = 1060 while the calculations are based upon the velocity distribution of 
Fage measured at R = 157,200. 

Figure 11 represents the local Nusselt number for g 5> 1 (say g > 10). Com- 
paring this curve with the corresponding curve for the circular cylinder, it appears 
that under equal conditions the local heat flux of spheres is higher than that of 
circular cylinders. This may be explained physically by the spatial divergence of 
the streamlines in the boundary layer of the sphere, which is lacking in the 
boundary layer of the circular cylinder. Under equal conditions this effect makes 
the boundary layer of the sphere thinner than that of the circular cylinder. 
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This paper is a part of a doctoral thesis presented at the Technological Univer- 
sity at Delft. The author is indebted to Prof. Dr J. A. Prins of the Technological 
University for helpful discussions and suggestions. 
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FIGURE 11. The local Nuseelt number for spheres and circular cylinders at us 1. 

REFERENCES 

B L A S ~ S ,  H. 1908 2. Math. Phys. 56, 1; also Nut. Adv. Comm. Aero., Wash., Tech. Mem. 

BOUSSINESQ, J .  1903 Thciorie Analytique de la Chaleur, vol. 11. Paris: Gauthier-Villars. 
BOUSSINESQ, J. 1905 J .  Math. Pures Appl. 1, 285. 
BROWN, W. B. & DONOUGHE, P. L. 1951 Nut. Adv. Comm. Aero., Wash., Tech. Note,no. 2479. 
COHEN, C. B. & RESHOTKO, E. 1955 Nut. Adv. Comm. Aero., Wash., Tech. Note, no. 3326. 
DAVIES, D. B. & BOURNE, D. E. 1956 Quart. J .  Mech. Appl. Math. 9, 457. 
DOETSCH, G. 1943 Theorie und Anwendung der Laplace-Transfomtwn. New York: 

DREW, T. B. 1931 Trans. Amer. Inst. Chem. Engrs, 26, 6. 
ECKERT, E. 1942 V.D.1.-Forschungsheft 416. 
ECKERT, E. & LIVINGOOD, J. N. B. 1953 Nat. Adv. Comm. Aero., Wash., Rep. no. 1118. 
FALKNER, V. M. & SKAN, S. W. 1930 Aero. Res. Coun. Lond., Rep. & Mem. no. 1314: 

FROSSLING, N. 1938 Beitr. Geophys. 52, 170. 
FROSSLINCI, N. 1940 Lunds Univ. hsskr . ,  N.P. Avd. 2, 36, no. 4. 
GORTLER, H. 1939 2. angew. Math. Mech. 19, 129. 
GORTLER, H. 1957 J .  Math. Mech. 6 ,  1. 
HARTREE, D. R. 1937 Proc. Camb. Phil. SOC. 33, 223. 
HIEMENZ, K. 1911 Dissertation, Gottingen; also Dinglers Polytech. J .  326, 32 (1911). 
KARMAN, Th. VON 1921 2. angew. Math. Mech. 1,233; also Nut. Adv. Comm. Aero., Wash., 

KOTSCHIN, N. J., KIBEL, I. A. & ROSE, N.  W. 1955 Theoretische Hydromechanik 11, Akccd. 

LIGHTHILL, M. J. 1950 Proc. Roy. SOC. A, 202, 359. 
MANGLER, W. 1948 2. angew. Math. Mech. 28, 97. 

no. 1256. 

Dover. 

also Phil. Mag. (7), 12, 865 (1931). 

Tech. Mem. no. 1092. 

Verlag, Berlin, p .  399. 



480 H .  J .  Merk 

MEKSYN, D. 1947 Proc. Roy. SOC. A, 192, 545, 567. 
MEKSYN, D. 1948 Proc. Roy. SOC. A, 194, 218. 
MEKSYN, D. 1950 Proc. Roy. SOC. A, 201, 268, 279. 
MEKSYN, D. 1955 Proc. Roy. SOC. A, 231, 274. 
MEKSYN, D. 1956 Proc. Roy. SOC. A, 237, 543. 
MoRam, G. W. & WARNER, W. H .  1956 J .  Aero. Sci. 23, 937. 
PIERCY, N. A. V. & PRESTON, J. H .  1936 Phil. Mag. 21, 995. 
POHLHAUSEN, E. 1921 2. angew. Math. Mech. 1, 115. 
POHLHAUSEN, K. 1921 2. angew. Math. Mech. 1, 252. 
PRANDTL, L. 1904 Proc. 3rd Int. Math. Congr., Heidelberg, p .  484. 
PRANDTL, L. 1938 2. angew. Math. Mech. 18, 77 ; also Nat. Adv. Comm. Aero., Wash., Tech. 

SCHMIDT, E. & WENNER, K.  1941 Forsch. Ing.-Wes. 12, 65. 
SCHUH, H. 1949 Temperaturgrenzschichten. Gottinger Monographien, B,  6. 
SCWH, H. 1954 Porsch. Ing.-Wes. 20, 37. 
SMITH, A. M. 0. 1956 J .  Aero. Sci. 23, 901. 
SPARROW, E. M. & GREGG, J. L. 1957 J .  Aero. Sci. 24, 852. 
STEWARTSON, K. 1950 Proc. Roy. SOC. A, 200, 84. 
TIFFORD, A. N. 1951 J .  Aero. Sci. 18, 283. 
TOPFER, C. 1912 2. Math. Phys. 60, 397. 

Mem. no. 959. 


